Si3N4 Young’s modulus measurement from microcantilever beams using a calibrated stylus profiler

Jacobo Esteban Munguia Cevantes, Juan Vicente Méndez Méndez, Hector Francisco Mendoza León, Miguel Ángel Alemán Arce, Salvador Mendoza Acevedo, Horacio Estrada Vázquez

Abstract


Stylus surface profiler has been widely used in order to measure Young’s modulus of silicon nitride (Si3N4) from microcantilever beams. Until now, several Si3N4 Young’s modulus values have been reported. It may be due to incomplete assessment of the microcantilever beams bending over its entire length or a lack of calibration of the stylus force system used in those works. We presented in this work an alternative method to measure the elastic modulus of MEMS thin layers in a rather accurate manner. A stylus force calibration is reported from a calibrated silicon microcantilever beam in order to measure the Si3N4 Young’s modulus. We reported Si3N4 Young´s modulus from three microcantilever beams, with values of 219.4 ± 0.6 GPa, 230.1 ± 3.4 GPa and 222 ± 11 GPa for 50 µm, 100 µm and 200 µm wide respectively, which are in good agreement with respect to the Si3N4 Young´s modulus which have been determined by other methods.

Keywords


Microcantilever; Si3N4; Young´s Modulus; mechanical stylus profiler

Full Text:

PDF

References


. W.N. Sharpe, Handbook of Experimental Solid Mechanics, 3rd Ed. (Springer, 2010) p.203-225.

ISBN: 978-0-387-26883-5

http://www.springer.com/us/book/9780387268835

. W.N. Sharpe Jr., B. Yuan, R.L. Edwards, J. Microelectromech. S. 6, 193 (1997).

http://dx.doi.org/10.1109/84.623107

. L. Kiesewetter, J.-M. Zhang, D. Houdeau, A. Steck- Enborn, Sensor. Actuat. A.Phys. 35, 153 (1992).

http://dx.doi.org/10.1016/0924-4247(92)80154-U

. T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix, J. Mater. Res. 3, 931 (1988).

http://dx.doi.org/10. 557/JMR.1988.0931

. B.D. Jensen, M.P. de Boer, N.D. Masters, F. Bitsie, D.A. La Van, J. Microelectromech. S. 10, 336 (2001).

http://dx.doi.org/10.1109/84.946779

. M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, J. Brugger, Fatigue Fract. Eng. M. 28, 735 (2005).

http://dx.doi.org/10.1111/j.1460-2695.2005.00873.x

. M. Qin, V.M.C. Poon, J. Mater. Sci. Lett. 19, 2243 (2000).

http://dx.doi.org/10.1023/A:1006729009092

. Y-C. Tai, R.S. Muller, Proceedings of IEEE Micro electro mechanical systems (New York, 1190) pp. 147-152.

http://dx.doi.org/ 10.1109/MEMSYS.1990.110267

. M.W. Denhoff, J. Micromech. Microeng. 13, 686 (2003).

http://dx.doi.org/10.1088/0960-1317/13/5/321

. G.J. McShane, M. Boutchich, A. Srikantha Phani, D.F. Moore, J. Micromech. Microeng. 16, 1926 (2006).

http://dx.doi.org/10.1088/0960-1317/16/10/003

. J.L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

http://dx.doi.org/10.1063/1.1143970

. J,M, Gere, B.J. Goodno, Mechanics of Materials, 8th ed. (CENGAGE, 2013) p. 486-509.

ISBN-13: 978-1-111-13603-1

https://cengage.com.au/product/title/mechanics-of-materials-brief-si-edition/isbn/9781111136031

. J.J. Wortman and R. A. Evans, J. Appl. Phys., 36, 153 (1965).

http://dx.doi.org/10.1063/1.1713863

. M.A. Hopcroft, W. D. Nix, T. W. Kenny, J. Microelectromech. S. 19, 229 (2010).

http://dx.doi.org/10.1109/JMEMS.2009.2039697

. E. Peiner, L. Doering, Sensor. Actuat. A.Phys. 123-124, 137 (2005).

http://dx.doi.org/10.1016/j.sna.2005.02.031

. G. Dai, L. Jung, L. Koenders and R. Krüger-Sehm, J. Phys.: Conf. Ser. 13, 236 (2005).

http://dx.doi.org/10.1088/1742-6596/13/1/055

. W-H. Chuang, T. Luger, R.K. Fetting, R. Ghodssi, J. Microelectromech. S. 13, 870 (2004).

http://dx.doi.org/10.1109/JMEMS.2004.836815

. A. Khan, J. Philip, P. Hess, J. Appl. Phys. 95, 1667 (2004).

http://dx.doi.org/10.1063/1.1638886


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 The authors. Licensee SMCTSM.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.