Photoacoustic Spectroscopy applied to the juice and rind characterization of Citrus latifolia with different quality of samples

Susan Cristina Corzo-Ruiz, Francisco Hernández-Rosas, Margarita Lizeth Alvarado-Noguez, Juan Hernandez-Rosas, Alfredo Cruz-Orea


The main purpose of the present study was to characterize the juice and rind of the Persian lime (Citrus latifolia) with different quality of samples, by means of the Photoacoustic Spectroscopy (PAS) technique. In agreement to the Mexican quality standards, the samples under study were classified into four degrees of quality i.e. Extra, Second, Third and Waste classes. We have used PAS to characterize the optical properties of each one of the samples. Thus, we have obtained the absorption spectra of the juice as well as in that part of the rind called flavedo. After that, using another different photoacoustic configuration, we have measured the water vapor permeability of the albedo; i.e. the innermost, white and spongy layer of the rind. Our results show that PAS is a reliable technique to get the grading quality of samples in situ of fresh fruits such as Persian limes by means of the study of some of their physical properties.


Absorption spectrum; Persian lime; Lime juice; Lime peel; Water vapor diffusion coefficient

Full Text:



. F. Calabrese, in Citrus: The Genus Citrus, Eds. G. Dugo and A. Di Giacomo (CRC Press, New York, 2002).

ISBN: 9780415284912

. FAO Statistical Yearbook 2013. World Food and Agriculture (FAO, Rome, 2013).

. G. Almaguer-Vargas, A.V. Ayala-Garay, Revista Chapingo Serie Horticultura 20, 89 (2014).

. J.M. Ortíz, in Citrus: The Genus Citrus, Eds. G. Dugo and A. Di Giacomo (CRC Press, New York, 2002).

ISBN: 9780415284912

. G. Gattuso, D. Barreca, C. Gargiulli, U. Leuzzi, C. Caristi, Molecules 12, 1641 (2007).

. E. Tripoli, M. La Guardia, S. Giammanco, D. Di Majo, M. Giammanco, Food Chem. 104, 466 (2007).

. M.L. Lota, D. de Rocca-Serra, F. Tomi, C Jacquemond, J. Casanova, J. Agric. Food Chem. 50, 796 (2002).

. G.A. López-Muñoz, J.A. Balderas-López, Thermochim. Acta 579, 40 (2014).

. J. Aguilar-Ávila, A. Vaquero-Vera, G. Almaguer-Vargas, J.A. Leos-Rodríguez, B. Avendaño-Ruiz, Investigación y Ciencia U.A. Ags. 57, 38 (2013).

. V.R. Barrientos-Sotelo, R. Cano-Casas, A. Cruz-Orea, F. Hernández-Rosas, J. Hernández-Rosas, Food Biophys. 10, 481 (2015).

. J. Londoño-Londoño, V. Rodrigues de Lima, O. Lara, A. Gil, T.B. Crecsynski-Pasa, G. J. Arango, J.R. Ramirez-Pineda, Food Chem. 119, 81 (2010).

. M.U. Ozgür, S. Sungur, Talanta 42, 1631 (1995).

. M. Neumann, N.A. Garcia, J. Agric. Food Chem. 40, 957 (1992).

. H. Matsumoto, Y. Ikoma, M. Kato, T. Kuniga, N. Nakajima, T. Yoshida, J. Agric. Food Chem. 55, 2356 (2007).

. J.B. Harborne, Phytochem. Methods (Chapman & Hall, New York 1973).

ISBN: 978-94-009-5570-7

. V. Srilaong, S. Aiamla-or, A. Soontornwat, M. Shigyo, N. Yamauchi, Postharvest Biol. Tech. 59, 110 (2011).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2018 The Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.