CaO stabilized ZrO2 coating intended to reduce corrosion on steel and aluminum substrates

Iván Villarreal, Miguel Aldás, Victor Hugo Guerrero-Barragan, Nelly María Rosas-Laverde, Alexis Debut


In this work, we studied the anticorrosive properties of sol-gel nanostructured calcium stabilized zirconia coatings, deposited onto 304 stainless steel and commercial aluminum substrates by dip-coating and spin-coating. During the ceramic oxide synthesis, zirconium oxychloride octahydrate was used as precursor and calcium acetate monohydrate was used as stabilizer of the cubic zirconia structure, in a precursor/stabilizer molar ratio of 0.84/0.16. The gel films deposited on steel and aluminum were heat treated at 550 y 600 °C during 5 and 10 min, respectively, and the adherence of the resulting ceramic films was evaluated. Continuous coatings were obtained that reached average thicknesses between 2 y 3 mm when deposited on stainless steel, and between 1.5 y 1.6 on aluminum, depending on the coating method. The corrosion resistance of the best-adhered coatings was evaluated during 500 h in a saline chamber, according to ASTM B117-11. All the substrate-coating combinations showed a very good corrosion resistance. For the two substrate types, the films deposited by dip-coating showed higher corrosion resistance than the ones deposited by spin-coating. The anticorrosive protective effect of the coatings was better for the aluminum substrates, compared to the stainless-steel substrates.


Zirconium oxide; nanoparticle synthesis; Sol-Gel method; coating; anticorrosion properties


. A. Popoola, O.E. Olorunniwo, O.O. Ige, in Developments in Corrosion Protection, Ed. M. Aliofkhazraei (InTech, Rijeka, Croatia, 2014) pp. 241-270.

. F. Perdomo, L. A. Avaca, M. A. Aegerter, P. De Lima-Neto, J. Mater. Sci. Lett. 17, 295 (1998).

. D. Wang, G. P. Bierwagen, Prog. Org. Coat. 64, 327 (2009).

. B. Babiarczuk, A. Szczurek, A. Donesz, I. Rutkowska, J. Krzak, Surf. Coat. Technol. 285, 134 (2016).

. A.S. Hamdy, D.P. Butt, J. Mater. Process. Tech. 181, 76 (2007).

. Y. Jung, H.G. Kim, J.Y. Park, D.J. Park, J.H. Park, J. Asian Ceram. Soc. 3, 217 (2015).

. I. Villarreal, N.M. Rosas, V.H. Guerrero, Revista Politécnica 38, 7 (2017).

. G. Cubillos, J. Olaya, M. Bethencourt, G. Cifredo, G. Blanco, J. Therm. Spray Techn. 22, 1242 (2013).

. M. Sahnesarayi, M. Sarpoolaky, S. Rastegari, Surf. Coat. Technol. 258, 861 (2014).

. S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, J. Fu, Nanoscale Res. Lett. 7, 227 (2012).

. G. Carbajal-De la Torre, M.A. Espinosa-Medina, J.J. Pacheco-Ibarra, L.A. Ibarra-Bracamontes, S.R. Galván, M.I. Cabrera, Superficies y Vacío 24, 121 (2011).

. S. Rezaee, G. Rashed, M. Golozar, Int. J. Corros. 2013, 1 (2013).

. R. Smith, X. Zhou, W. Huebner, H. Anderson, J. Mater. Res. 19, 2708 (2004).

. J. Dong, M. Hu, E. Payzant, T. Armstrong, P. Becher, J. Nanosc. Nanotechnol. 9, 161 (2002). /10.1166/jnn.2002.082

. I. Cubillos, J. Olaya, M. Bethencourt, G. Cifredo, J. Marco, Rev. Latinoam. Metal. Mater. 33, 116 (2013).

. Powder Diffraction Files v2.01, JCPDS (International Center for Diffraction Data, Pennsylvania, 2000).

. P. Duran, Bol. Soc. Esp. Ceram. V. 38, 403 (1999).

. C.R. Arroyo, A. Debut, A.V. Vaca, C. Stael, K. Guzman, B. Kumar, L. Cumbal, Biol. Med. 8, 1 (2016).

. C. Yañez,. Master’s Thesis “Síntesis y caracterización de películas delgadas del sistema ZrO2:8%Y2O3 mediante la técnica sol-gel”, (Instituto Politécnico Nacional, México, 2008).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2017 The authors. Licensee SMCTSM.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.