A modular and generic monolithic integrated MEMS fabrication process

Mónico Linares Aranda, W. Calleja Arriaga, A. Torres Jacome, C.R. Báez Álvarez


A modular and generic, monolithic integrated MEMS fabrication process is presented to integrate microelectronics (CMOS) with mechanical microstructures (MEMS). The proposed monolithic integrated fabrication process is designed using an intra-CMOS approach (to fabricate the mechanical microstructures into trenches without the need of planarization techniques) and a CMOS module (to fabricate the electronic devices) with a 3 μm length as minimum feature. The microstructures module is made up to three polysilicon layers, and aluminum as electrical interconnecting material. From simulation results, using the SILVACO® suite (Athena and Atlas frameworks), no significant degradation on the CMOS performance devices was observed after MEMS manufacturing stage; however, the thermal budget of the modules plays a crucial role, because it set the conditions for obtaining the complete set of devices fabricated near their optimal point. Finally, to evaluate and to support the development of the proposed integrated MEMS process, a modular test chip that includes electrical test structures, mechanical test structures, interconnection reliability test structures and functional micro-actuators, was also designed.


MEMS; CMOS; Process Simulation; Surface Micromachining;Test chip.

Full Text:



. Sandia Lab’s, MEMS Video & Image Gallery (2016).


. H. Baltes, O. Brand, G.K. Fedeer, in: CMOS-MEMS: Advanced Micro and Nanosystems, Vol. 2 (Wiley & Sons, 2005).


. A.C. Fischer, F. Forsberg, M. Lapisa, S.J. Bleiker, G. Stemme, N. Roxhed, F. Niklaus, Microsystems & Nanoengineering Journal, 1 (2015).


. P. Mannion, Advances make MEMS sensors easier to integrate (2016).


. Laboratorio de innovación en MEMS, Instituto Nacional de Astrofísica Óptica y Electrónica, México (2017).


. D. Díaz, F.J. Quiñones, C. Zuñiga, J. Molina, M. Linares, P. Rosales, A. Torres-Jacome, C. Reyes, W. Calleja, 13th World Congress in Mechanism and Machine Science, 1 (2011).


. F. Coyotl Mixcoatl, A. Torres Jacome, 6th International Caribbean Conference on Devices, Circuits and Systems, 359 (2006).


. F.J. Quiñones-N, D. Diaz-A, W. Calleja-A, F.J. De la Hidalga-W, O. Malik, C. Reyes-B, J. Molina-R, M. Moreno-M, C. Zúñiga-I, P. Rosales-Q, International Caribbean Conference on Devices, Circuits and Systems, 1 (2014).


. D. Díaz Alonso, M. Sc. Thesis (INAOE, 2010).


. C.R. Báez Álvarez, Ph.D. Thesis (INAOE, 2016).


. Athena User’s Manual. Silvaco Inc. (2013).


. H. Qu, Micromachines 7, 1 (2016).


. F.J. Quiñones-N, F.J. De la Hidalga-W, M. Moreno, J. Molina, C. Zúñiga, W. Calleja, Results Phys. 4, 119 (2014).


. O. Brand, Proc. IEEE 94, 1160 (2006).


. J. De Guzman Venezuela, J.A. Amorsolo, Thermal stability study on titanium disilicide (TiSi2) thin films with titanium nitride (TiN) capping, Philippine Engineering Journal 23, 49 (2002).


. K. Sakamoto, K. Nishi, J. Appl. Phys. 61, 1986 (1987).


. S. Walwadkar, P.W. Farrell, L.E. Felton, J. Cho, Proceed. SPIE 5288, 847 (2003).


. X. Zhang, S. Park, M.W. Judy, J. Microelectromech. Syst. 16, 639 (2007).


. J. Roberts, S. Hussain, M.K. Rahim, M. Motalab, J.C. Suhling, R.C. Jaeger, P. Lall, R. Zhang, 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic systems, 1 (2010).


. R. Ghodssi, P. Lin, MEMS Materials and Processes Handbook (Springer, 2011).


. M.G. Buehler, Solid State Technol. 22, 89 (1979).


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2017 The authors; licensee SMCTSM, Mexico.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.