Dynamic Monte Carlo study of impurities effect on the oscillatory and space behavior in CO + NO on Pt(100) reaction
PDF (Español (España))

Keywords

Pt(100) Surface
NO reduction
Oscillations
Pattern formation
Impurities
Dynamic Monte Carlo. Superficie de Pt(100)
Reducción de NO
Oscilaciones
Patrones espaciales
Impurezas
Monte Carlo dinámico.

How to Cite

Alas, S. (2015). Dynamic Monte Carlo study of impurities effect on the oscillatory and space behavior in CO + NO on Pt(100) reaction. Superficies Y Vacío, 28(3), 78-85. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/20

Abstract

A dynamic Monte Carlo simulation is proposed to explore the effect of inert surface impurities on the oscillatory behavior and pattern formation in the NO reduction by CO on Pt(100) surface at ultra high vacuum conditions (UHV) and relatively high temperature conditions. In this study was found that sustained oscillations change into a damped one and the spatial patterns, in this case cell type, are broken when the amount of impurities increases. This occurs mainly because the amount of the adsorbed species clusters decreases, the dissociation of adsorbed NO is slow and the diffusive movement of the adsorbed species is delayed.
PDF (Español (España))

References

.F. Garin, Appl. Catal. A: Gen., 222, 183 (2001).

.M. A. Gómez-García, V. Pitchon, A. Kiennemann, Environ. Int., 31, 445 (2005).

.G. A. Somorjai, Introduction Surface Chemistry and Catalisys. John Wiley & Sons, Inc., New York. 1994.

.H. H. Rotermund, Surf. Sci. Rep. 29, 265 (1997).

.R. Imbihl, G. Ertl, Chem. Rev. 95, 697 (1995).

.V. P. Zhdanov, Surf. Sci. Rep. 45, 231 (2002).

.G. Veser, F. Mertens, A. S. Mikhailov, R. Imbihl, Phys. Rev. Lett. 71, 935 (1993).

.G. Veser, R. Imbihl, J. Chem. Phys. 100, 8483 (1994); 100, 8492 (1994).

.Th. Fink, J.-P.Dath, R. Imbihl, G. Ertl, J. Chem. Phys. 95, 2109 (1991).

. N. Khrustova, G. Veser, A. Mikhailov, R. Imbihl, Phys. Rev. Lett. 75, 3564 (1995).

. M. Tammaro, J. W. Evans, J. Chem. Phys. 108, 7795 (1998).

. S. J. Alas, F. Rojas, I. Kornhauser, G. Zgrablich, J. Mol. Catal. A. 244, 183 (2006).

. S. J. Alas, G. Zgrablich, J. Chem. Phys. B. 110, 9499 (2006).

. J. Liu, D. Hua, L. Jian, Chin. J. Chem. Phys. 20, 279 (2007).

. K. Asakura, J. Lauterbach, H. H. Rotermund, G. Ertl, Surf. Sci. 374, 125 (1997).

. G. Ertl, Langmuir. 3, 4 (1987).

. Th. Fink, J.-P.Dath, M. R. Bassett, R. Imbihl, G. Ertl, Surf. Sci. 245, 96 (1991).

. K. Mase, Y. Murata, Surf. Sci. 277, 97 (1992).

. A. Borg, A. M. Hilmen, E. Bergene, Surf. Sci. 306, 10 (1994).

. V. P. Zhdanov, J. Chem. Phys. 110, 8748 (1999).

. N. Hartmann, Y. Kevrekidis, R. Imbihl, J. Chem. Phys. 112, 6795 (2000).

. N. G. van Kampen, Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland (1992).

. H. Hinrichsen, Adv. in Phys. 49, 815 (2000).

. R. J. Gelten, A. P. J. Jansen, R. A. van Santen, J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, J. Chem. Phys. 108, 5921 (1998).

. S. J. Alas, Rev. Mex. Ing. Quim. 13, 811 (2014).

. H. Horino, T. Matsushima, J. Phys. Chem. B Lett. 109, 675 (2005).

. F. Zaera, C. S. Gopinath, Chem. Phys. Lett. 332, 209 (2000).

. C. S. Gopinath, F. Zaera, J. Phys. Chem. B. 104, 3194 (2000).

. F. Zaera, S. Wehner, C. S. Gopinath, J. L. Sales, V. Gargiulo, G. Zgrablich, J. Phys. Chem. B. 105, 7771 (2001).

. O. Kortlüke, W. Von Niessen, J. Chem. Phys. 105, 4764 (1996).

. B. K. Cho, J. Catal. 138, 255 (1992).

. D. Mei, Q. Ge, M. Neurock, L. Kieken, J. Lerou, Mol. Phys. 102, 361 (2004).

. M. Neurock, S. A. Wasileski, D. Mei, Chem. Eng. Sci. 59, 4703 (2004).