Amorphous Zr(OH)4 to t-ZrO2 transformed isothermally

Jonathan Meza Galvez, Oscar Olea Mejía, Susana Hernández López, Enrique Vigueras Santiago, Marco Antonio Camacho López


With the aim to study the transformation from the commercially amorphous Zr(OH)4 to the t-ZrO2, phase, the starting material was isothermally treated in a calorimeter at 350, 365, 370, 375 and 380 o C. The TGA coupled to the DSC technique was used to determine with high precision both the temperature and time necessary to achieve the amorphous Zr(OH)4 to  t-ZrO2 transformation. The mass loss and heat flow, as a function of time, were monitored to study the dehydroxylation of Zr(OH)4 and the crystallization processes, respectively. Raman spectroscopy was used to obtain evidence of the t-ZrO2 formation. The DSC results show an exothermic peak (typical of amorphous-crystalline transitions) related to the formation of t-ZrO2. Our results indicate that the time necessary to obtain the t-ZrO2 phase shortens when temperature increases.


Zirconium hydroxide; Tetragonal Zirconia; Isothermal treatment; Raman spectroscopy

Full Text:



. X. Zhang, H. Wang, Bo Xu, J. Phys. Chem. B 109, 9678 (2005).

. W.C. Maskell, Solid State Ionics 134, 43 (2000).

. S. Gupta, Dent Implants Dentures 1, 1 (2016)

. C. Piconi, G. Maccauro, Biomaterials 20, 1(1999).

. J.R. Kelly, P. Benetti, Aust. Dent. J. 56, 84 (2011)

. M.I. Gutierrez, E.H. Penilla, L. Leija, A. Vera, J.E. Garay, G. Aguilar, Adv. Healthcare Mater. 6, 1 (2017).

. M. Li, Z. Feng, G. Xiong, P. Ying, Q. Xin, and C. Li, J. Phys. Chem. B 105, 8107 (2001).

. T. Sato, J. Therm. Anal. Calorim. 69, 255 (2002).

. M. Picquart, T. López, R. Gómez, E. Torres, A. Moreno, and J. Garcia, J. Therm. Anal. Calorim. 76, 755 (2004).

. J.M. Hernández-Enríquez, L.A. García-Serrano, R. García-Alamilla, L.A. Cortez-Lajas, A. Cueto-Hernández, Superficies y Vacío 22, 1 (2009).

. P. Zhang, K.L. Choy, Int. J. Eng. Res. Sci. 7, 18 (2015).

. M. Jouanne, J.F. Morhange, M.A. Kanehisa, E. Haro-Poniatowski, G.A. Fuentes, E. Torres, E. Hernández-Tellez, Phys. Rev. B 64, 1 (2001).

. J. Livage, K. Doi, and C. Mazieres, J. Am. Ceram. Soc. 51, 349 (1968).

. V.B. Glushkova, A.N. Lapshin, Glass Phys. Chem. 29, 415 (2003).

. O. Roberts, A.J.G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S.M. Kreynin, T.K. Neo, A.M. Korsunsky, W.C.E. Proceeding 2, 1173 (2014)

. R.P. Denkewicz, TenHuisen K.S., J.H. Adair, J. Mater. Res. 5, 2698 (1990)

. H. Nishizawa, N. Yamasaki, K. Matsuoka, H. Mitsushio, J. Am. Ceram. Soc. 65, 343 (1982).

. M.D. Baro, N. Clavaguera, S. Suriñach, Mater. Sci. Eng. 97, 333 (1988).

. V.G. Keramidas, W.B. White, J. Am. Ceram. Soc. 57, 22 (1974).

. G. Stefanic, S. Music, S. Popovic, A. Sekulic, J. Mol. Struct. 408/409, 391 (1997).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2018 The authors; licensee SMCTSM

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.