Bipolar resistive switching on Ti/TiO2/NiCr memory cells

Eric Hernandez Rodriguez, Alfredo Marquez Herrera, Miguel Melendez Lira, Enrique Valaguez Velazquez, Martin Zapata Torres

Abstract


We investigated the electric-field-induced resistance-switching behavior of metal-insulator-metal (MIM) cells based on TiO2 thin films fabricated by the reactive RF-sputtering technique. MIM cells were constructed by sandwiched TiO2 thin films between a pair of electrodes; Ti thin films were employed to form an ohmic bottom contact and NiCr thin films were employed to form Schottky top electrodes obtaining Ti/TiO2/NiCr MIM cells. Schottky barrier height for the TiO2/NiCr junction was determined according to the thermionic emission model by using the Cheung´s functions. SEM and Raman analysis of the TiO2 thin films were carried out to ensure the quality of the films. Current-Voltage (I-V) sweeps obtained at room temperature by the application of dc bias showed a bipolar resistive switching behavior on the cells. Both low resistance state (ON state) and high resistance state (OFF state), of Ti/TiO2/NiCr cells are stable and reproducible during a successive resistive switching. The resistance ratio of ON and OFF state is over 103 and the retention properties of both states are very stable after 105 s with a voltage test of 0.1 V.


Keywords


TiO2; MIM cells; Resistive switching; RRAM

Full Text:

PDF

References


. A. Sawa, Mater. Today 11.6, 28 (2008).

https://doi.org/10.1016/S1369-7021(08)70119-6

. W. Wełnic, M. Wuttig, Mater. Today 11.6, 20 (2008).

https://doi.org/10.1016/S1369-7021(08)70118-4

. C. Kügeler, M. Meier, R. Rosezin, S. Gilles, R. Waser, Solid-State Electron. 53, 1287 (2009).

https://www.sciencedirect.com/science/article/pii/S0038110109002871

. T. Oka, N. Nagaosa, Appl. Phys. Lett. 85, 266403 (2005).

https://doi.org/10.1103/PhysRevLett.95.266403

. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang. K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

https://doi.org/10.1063/1.2001146

. U. Russo, D. Ielimini, C. Cagli, A. Lacaita, S. Spiga, C.Wiemer, M. Perego, M. Fanciulli, Electron Devices Meeting, 2007 IEEE International, 775 (2007).

https://doi.org/10.1109/TED.2008.2010584

. B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. Kang, B. Yu, IEEE Electron Device Letters 30, 1326 (2009).

http://ieeexplore.ieee.org/document/5291772/

. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, Appl. Phys. Lett. 89, 042904 (2006).

https://doi.org/10.1063/1.2234840

. M.J. Rozenberg, I.H. Inoue, M.J. Sánchez, Appl. Phys. Lett. 88, 0033510 (2006).

https://doi.org/10.1016/j.tsf.2004.10.059

. W.Y. Yang, W.G. Kim, S.W. Rhee, Thin Solid Films 517, 967 (2008).

https://doi.org/10.1016/j.tsf.2008.08.184

. C.Y. Lin, D.Y. Lee, S.Y. Wang, C.C. Lin, T.Y. Tseng, Surf. Coat. Technol. 203, 628 (2008).

https://doi.org/10.1016/j.surfcoat.2008.06.133

. C.Y. Lin, C.Y. Wu, C.Y. Wu, C.C. Lin, T.Y. Tseng, Thin Solid Films 516, 444 (2007).

https://doi.org/10.1016/j.tsf.2007.07.140

. X. Cao, X.M. Li, X.D. Gao, Y.W. Zhang, X.J. Liu, Q.Wang, L.D. Chen, Appl. Phys. A 97, 883 (2009).

https://doi.org/10.1007/s00339-009-5351-7

. Xun Cao, Xiaomin Li,Weidong Yu, Xinjun Liu, Xiliang He, Mater. Sci. Eng. B 157, 36 (2009).

https://doi.org/10.1016/j.mseb.2008.12.005

. E. Hernandez-Rodriguez, A. Marquez-Herrera, M. Melendez-Lira, M. Zapata-Torres, Mater. Sci. Eng. B 172, 187 (2010).

https://doi.org/10.1016/j.mseb.2010.05.017

. Y.C. Bae, A.R. Lee, J.S. Kwak, H. Im, Y.H. Do, J.P. Hong, Appl. Phys. A 102, 1009 (2011).

https://doi.org/10.1007/s00339-011-6289-0

. H.Y. Jeong, S.K. Kim, J.Y. Lee, S.Y. Choi, Appl. Phys. A 102, 967 (2011).

https://doi.org/10.1007/s00339-011-6278-3

. Y. Li, G. Zhao, X. Zhou, L. Pan, Y. Ren, J. Sol-Gel Sci. Technol. 56, 61 (2010).

https://doi.org/10.1007/s10971-010-2274-x

. H.Y. Jeong, J.Y. Lee, S.Y. Choi, J.W. Kim, Appl. Phys. Lett. 95, 162108 (2009).

https://doi.org/10.1063/1.3251784

. Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im, J.P. Hong, Thin Solid Films 518, 4408 (2010).

https://doi.org/10.1016/j.tsf.2010.01.016

. R. Dong, D.S. Lee, M.B. Pyun, M. Hasan, H.J. Choi, M.S. Jo, D.J. Seong, M. Chang, S.H. Heo, J.M. Lee, H.K. Park, Hyunsang Hwang, Appl. Phys. A 93, 409 (2008).

https://doi.org/10.1007/s00339-008-4782-x

. H.Y. Jeong, J.Y. Lee, S.Y. Choi, Appl. Phys. Lett. 97, 042109 (2010).

https://doi.org/10.1063/1.3467854

. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85(1986).

https://doi.org/10.1063/1.97359

. S. Gholami, H. Hajghassem, M. Khajeh, IEICE Electron. Express 6, 1325 (2009).

https://doi.org/10.1587/elex.6.1325

. Y. Li, G. Zhao, X. Zhou, L. Pan, Y. Ren, Mat. Sci. Semicond. Process. 15, 37 (2012).

https://doi.org/10.1016/j.mssp.2011.07.001.

. H. Mähne, S. Slesazeck, S. Jakschik, I. Dirnstorfer, T. Mikolajick, Microelectron. Eng. 88, 1148 (2011).

https://doi.org/10.1016/j.mee.2011.03.030

. N.A. Tulina, I.Yu. Borisenko, A.M. Ionov, I.M. Shmyt’ko, Solid State Commun. 150, 2089 (2010).

https://doi.org/10.1016/j.ssc.2010.09.022

. L.W. Feng, Y.F. Chang, C.Y. Chang, T.C. Chang, S.Y. Wang, P.W. Chiang, C.C. Lin, S.C. Chen, S.C. Chen, Thin Solid Films 519, 1536 (2010).

https://doi.org/10.1016/j.tsf.2010.08.165


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments


Copyright (c) 2017 Enrique Valaguez Velazquez, Eric Hernandez Rodriguez, Alfredo Marquez Herrera, Miguel Melendez Lira, Martin Zapata Torres

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.