Theoretical analysis and FTIR of cellulose nanowhiskers/Poly(ButylAcrylate)
PDF
LENS

Keywords

Nanowhiskers
cellulose
simulation
surface
poly(butyl acrylate

How to Cite

Pineda Pimentel, M. G., Flores Ramirez, N., Farías Sanchez, J. C., Domratcheva Lvova, L., Vasquez Garcia, S. R., & Garcia Gonzalez, L. (2016). Theoretical analysis and FTIR of cellulose nanowhiskers/Poly(ButylAcrylate). Superficies Y Vacío, 29(3), 83-86. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/36

Abstract

Cellulose is the most abundant organic polymer on the earth that can be obtained from numerous resources, such as plants, bacteria and algae. Due to its nanostructured organization and unique properties; this polymer has been used to prepare different types of nanomaterials. Among the various cellulose-based nanomaterials, cellulose nanowhiskers (CNW) have attracted the researchers' interest due to the highly ordered crystalline regions, which has been added as reinforcing material in polymer composites. Thus, the aim of this study was to investigate the miscibility of two polymers: CNW on poly(butyl acrylate) (PBA) by molecular simulation and FTIR studies. Thus, molecular mechanics force-field simulations were performed by COMPASS. On the other hand, for the experimental work, CNW were prepared from wood cellulose by using an acid hydrolysis while the PBA was synthesized by solution polymerization. CNW/PBA composite was obtained by incorporating 0.1 and 0.5 wt% of CNW into a PBA solution. The molecular simulation confirmed the existence of intermolecular interactions between cellulose and PBA molecules. This is because the PBA and cellulose presented some free functional groups, such as C=O and OH, which were able to produce intermolecular interactions. According to this, for cellulose/PBA there was intermolecular hydrogen bonding interactions and Van der Waals forces. FTIR results were agree with the simulation results, because CNW/PBA composite showed the associations between C=O and OH groups.
PDF
LENS

References

. D. Klemm, B. Heublein, H.P. Fink, A. Bohn,Angew. Chem. Int. Edit. 44, 3358 (2005).

http://dx.doi.org/10.1002/anie.200460587

. C. O'Sullivan,Cellulose 4, 173 (1997).

http://dx.doi.org/10.1023/A:1018431705579

. Y. Pu, D. Zhang, P.M. Singh, A.J. Ragauskas, Biofuels Bioprod. Biorefin 2, 58 (2008).

http://dx.doi.org/10.1002/bbb.48

. S.J. Hanley, J. Giasson, J.F. Revol, D.G. Gray, Polymer 33, 4639 (1992).

http://dx.doi.org/10.1016/0032-3861(92)90426-W

. P. Terech, L. Chazeau, J.Y. Cavaille, Macromolecules 32, 1872 (1999). ).

http://dx.doi.org/10.1021/ma9810621

. M. Grunert, W.T. Winter, J. Polym. Environ. 10, 27 (2002).

http://dx.doi.org/10.1023/A:1021065905986

. S. Beck-Candanedo, M. Roman, D.G. Gray, Biomacromolecules 6, 1048 (2005).

http://dx.doi.org/10.1021/bm049300p

. M.S. Huda, A.K. Mohanty, L.T. Drzal, E. Schut, M. Misra, J. Mater. Sci. 40, 4221 (2005).

http://dx.doi.org/10.1007/s10853-005-1998-4

. S.H. Lee, S. Wang, Y. Teramoto, J. Appl. Polym. Sci. 108, 870 (2008).

http://dx.doi.org/10.1002/app.26853

. P. Mathew, K. Oksman, M. Sain, J. Appl. Polym. Sci. 97, 2014 (2005).

http://dx.doi.org/10.1002/app.21779

. R. Zuluaga, J.L. Putaux, J. Cruz, J. Vélez, I. Mondragon, P. Gañán, Carbohyd. Polym. 76, 51 (2009).

http://dx.doi.org/10.1016/j.carbpol.2008.09.024

. M. Macháčková, J. Tokarský, P. Čapková, Eur. J. Pharm. Sci. 8, 316 (2013).

http://dx.doi.org/10.1016/j.ejps.2012.11.010

. Y. Tian, S. Chenjun, S. Yujiao, Z. Chengyun, S. Changquan C.M. Shirui, Mol. Pharm. 12, 816 (2015).

http://dx.doi.org/10.1021/mp5006504

. E. Espino-Pérez, J. Bras, V. Ducruet, A. Guinault, A. Dufresne, S. Domenek, Eur. Polym. J. 49, 3144 (2013).

http://dx.doi.org/10.1016/j.eurpolymj.2013.07.017

. R. Dash, A.J. Ragauskas, RSC Adv. 2, 3403 (2012).

http://dx.doi.org/10.1039/C2RA01071B

. J.H. Lee, S.H. Park, S.H. Kim, Macromol. Res. 21, 1218 (2013).

http://dx.doi.org/10.1007/s13233-013-1160-0

. R.O.R. Costa, F.S. Lameiras, W.L. Vasconcelos, J. Sol-Gel Sci. Techn. 27, 343 (2003).

http://dx.doi.org/10.1023/A:1024029305642

. O. Gutiérrez-Arriaga, S.R. Vásquez-García, N. Flores-Ramírez, G. Luna-Bárcenas, G. Barrera-Cardiel, C.A. León-Patiño, Glob. J. Sci. Front. Res. 12, 6-B (2012).

http://journalofscience.org/index.php/GJSFR/article/viewFile/437/385

. J. Brandrup, E.H. Immergut, Polymer Handbook, 4th ed. (John Wiley & Sons, New York, 1975), pp. 136-144.

ISBN: 978-0-471-47936-9

. J. Coates in Interpretation of Infrared Spectral, Encyclopedia of Analytical Chemistry, R.A. Meyers Ed. (John Wiley & Sons Ltd, Chichester, 2000), pp. 10815-10837.

https://es.scribd.com/document/94532360/Interpretation-of-Infrared-Spectra-A-Practical-Approach

. D. Dai, M. Fan, Mater. Sci. Appl. 1, 336 (2010).

http://dx.doi.org/10.4236/msa.2010.16049

. A. Chaidedgumjorn, H. Toyoda, E.R. Woo, K.B. Lee, Y.S. Kim, T. Toida, T. Imanari, Carbohyd. Res. 337, 925 (2002).

http://dx.doi.org/10.1016/S0008-6215(02)00078-2

. G.A. Petropavlovskii, G.G. Vasil'Eva, J. Appl. Spectrosc. 7, 173 (1967).

http://dx.doi.org/10.1007/BF00606146

. G.I. Bolio-López, A. Valadez-Gonzalez, L. Veleva, A. Andreeva, Rev. Mex. Ing. Quím. 10, 291 (2011). ). ISSN 1665-2738.

http://www.scielo.org.mx/scielo.php?pid=S1665-27382011000200013&script=sci_abstract

. R.M. Silverstein, F.X. Webster, D. Kiemle, D.L. Bryce, Spectrometric identification of organic compounds, 7th ed. (John Wiley & Sons, 2014), pp 83.

ISBN 0-471 39362-2

. G. Steiner, C. Zimmerer, Polymer Solids and Polymer Melts–Definitions and Physical Properties I (Springer-Verlag, Berlin Heidelberg, 2013) pp. 550-556.

ISBN 978-3-642-32071-2

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Array